$\mathrm{C}(32)$	$0.8242(17)$	$0.5387(14)$	$0.0613(13)$	$0.042(7)$
$\mathrm{C}(33)$	$0.929(2)$	$0.6077(14)$	$0.0205(14)$	$0.002(8)$
$\mathrm{C}(34)$	$0.991(2)$	$0.7015(16)$	$0.0694(14)$	$0.052(8)$
$\mathrm{C}(35)$	$0.953(2)$	$0.7295(13)$	$0.1577(15)$	$0.055(8)$
$\mathrm{C}(36)$	$0.852(2)$	$0.6650(13)$	$0.1967(13)$	$0.045(7)$

Dema, A. C., Lukehart, C. M., McPhail, A. T. \& McPhail, D. R. (1989). J. Am. Chem. Soc. 111, 7615-7616.

Fallis, S., Anderson, G. K. \& Rath, N. P. (1991). Organometallics, 10, 3180-3184.
Ferguson, G., Ruhl, B. L. \& Hampden-Smith, M. J. (1986). A.C.A. Abstracts, 14, 60.

Lukehart, C. M., McPhail, A. T., McPhail, D. R. \& Owen, M. D. (1990). J. Chem. Soc. Chem. Commun. pp. 215-217.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Siedle, A. R., Gleason, W. B., Newmark, R. A. \& Pignolet, L. H. (1986). Organometallics, 5, 1969-1975.

Acta Cryst. (1993). C49, 2081-2083

Structure of a Dichromium Octacarbonyl Complex of Cyclotetrakis[bis(diisopropylamino)phosphoxane]

The title compound was obtained by adding $\mathrm{PhMgBr}(0.115 \mathrm{ml}$, $3.0 \mathrm{M}, 2.1 \mathrm{eq}$.) dropwise to a stirred ethereal suspension of $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{Cl}_{2} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.174 \mathrm{~g})\right.$ at 273 K . The solution was allowed to warm to room temperature over a period of 3 h , then it was hydrolysed with $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution (5 ml). The ether layer was separated and the solvent was removed to leave a yellow powder. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta \mathrm{P} 4.3,{ }^{1} J(\mathrm{Pt}, \mathrm{P}) 3740 \mathrm{~Hz}$. ${ }^{1} \mathrm{H}$ NMR: $\delta \mathrm{H} 2.95 \mathrm{br}, 7.3-7.8 \mathrm{~m}$. A crystal suitable for diffraction studies was mounted on a glass fiber in random orientation. Indexing 15 automatically centered reflections from the photograph resulted in a triclinic cell. Axial photographs were taken to confirm the Laue symmetry and cell lengths. A set of high-angle data (2θ) was obtained using the initial orientation matrix. Final cell constants and orientation matrix for data collection were calculated by least-squares refinement. Data were collected with a variable scan rate. The intensities of the standards remained constant within experimental error and therefore no decay correction was applied.
Data reduction, structure solution and refinement were carried out using the SHELXTL-Plus software package (Sheldrick, 1991). A semi-empirical absorption correction was applied to the data using nine ψ-scan curves with $\chi>83^{\circ}$. The structure was solved by the Patterson method and refined successfully in the space group $P \overline{1}$. Full-matrix least-squares refinement was carried out by minimizing $w\left(F_{o}-F_{c}\right)^{2}$. The non- H atoms were refined anisotropically. The H atoms were added in idealized calculated positions and were held fixed.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete bond distances and angles, along with a structuredetermination summary have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71348 (47 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST1054]

References

Chen, J.-T., Yeh, Y. S., Lee, G.-H. \& Wang, Y. J. (1991). J. Organomet. Chem. 414, C64.

Jerry P. Jasinski* and Roman Y. Pozdniakov

Chemistry Department, Keene State College, 229 Main St, Keene, New Hampshire 03431, USA

Edward H. Wong
Chemistry Department, University of New Hampshire, Parsons Hall, Durham, New Hampshire 03824, USA
(Received 13 November 1992; accepted 23 April 1993)

Abstract

The molecule, μ-2,4,6,8-tetrakis(N, N-diisopropylamino)-cyclotetraphosphoxane- $1 \kappa^{2} P^{2}, P^{4}: 2 \kappa^{2} P^{6}, P^{8}$-bis[tetracarbonylchromium (0)], has an inversion center that relates the two chromium coordination spheres. Each metal atom is cis-coordinated to two P atoms of the tetraphosphoxane ring to form a four-membered $\mathrm{Cr}-\mathrm{P}-\mathrm{O}-\mathrm{P}$ chelate ring. The eight-membered phosphoxane heterocycle is a novel twist-boat-twist-boat configurational isomer of the alternative adamantanoid cage. Average distances are $\mathrm{Cr}-\mathrm{C} 1.869$ (3), $\mathrm{Cr}-\mathrm{P} 2.337$ (4) and $\mathrm{P}-\mathrm{O}$ 1.65 (2) A.

Comment

The $\mathrm{P}_{4} \mathrm{O}_{4}$ heterocycle [$\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NPO}\right]_{4}$ has been shown to be a versatile tetradentate ligand in a number of transitionmetal complexes (Wong et al., 1988; Wong, Gabe \& Lee, 1989). X-ray as well as solution NMR data have established that it can be 1,3,5,7-tetradentate adopting a boat-boat conformation in an adamantanoid bimetallic cage complex or 1,5 -bidentate for a single metal in either a chair-boat or chair-chair form. In addition, a

1,3-chelating mode is also feasible for first-row transition metals (Wong, Sun, Gabe \& Lee, 1991). We report here a dichromium complex that has this ligand in a novel twist-boat-twist-boat form, which is a configurational isomer of the adamantanoid cage complex.

The molecule has a crystallographic center of symmetry relating its two chromium coordination spheres, which are distorted octahedral. $\mathrm{Cr}-\mathrm{P}$ distances of 2.3393 (9) and 2.3353 (9) \AA are comparable to other reported values (Wong, Prasad, Gabe \& Bradley, 1982; Wong et al., 1989). Carbonyls (C2 and C4) trans to the P atoms have slightly shorter $\mathrm{Cr}-\mathrm{C}$ distances [1.856(3) \AA average] than those trans to each other [C1 and C3, 1.882 (3) A average] as is observed commonly (Cheung, Lai \& Mok, 1971; Payne, Mokuolu \& Speakman, 1965). The axial $\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 3$ angle deviates somewhat from linearity at $171.7(1)^{\circ}$. The four-membered $\mathrm{Cr}-\mathrm{P} 1-\mathrm{O} 2-\mathrm{P} 2$ chelate ring contains a compressed $\mathrm{P}-\mathrm{Cr}-\mathrm{P}$ angle of 66.16 (3) ${ }^{\circ}$ and a $\mathrm{P}-$ O-P angle of only $100.56(10)^{\circ}$, similar to two previously reported chelate rings of this type (Wong et al., 1982, 1989). The $\mathrm{P}_{4} \mathrm{O}_{4}$ ring is in a twist-boat-twist-boat conformation (Fig. 2) orienting the two chromium moieties away from each other. Average ring $\mathrm{P}-\mathrm{O}$ distances [$1.65(2) \AA]$ are unchanged from the boat-boat form values [1.65 (4) \AA (Wong et al., 1989)]. Not surprisingly, the ring $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angles differ severely from the 131.0 (2) ${ }^{\circ}$ angle observed for the latter conformation because of the two four-membered $\mathrm{Cr}-\mathrm{P}-\mathrm{O}-\mathrm{P}$ chelate rings. Two $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angles are compressed to $100.56(10)^{\circ}$, while the remaining two open up to $135.6(1)^{\circ}$. The nitrogen bonding sphere is nearly planar with the sum of the bond angles equal to $359.4(3)^{\circ}$.

Fig. 1. ORTEP (Johnson, 1976) drawing and numbering scheme of the title compound. Thermal ellipsoids are drawn at the 50% probability level.

Fig. 2. ORTEP (Johnson, 1976) drawing of the $\mathrm{P}_{4} \mathrm{O}_{4}$ ring only, showing the twist-boat conformation. Thermal ellipsoids are drawn at the 50% probability level.

Experimental

Crystal data
$\left[\mathrm{Cr}_{2}\left(\mathrm{C}_{24} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{4}\right)(\mathrm{CO})_{8}\right]$
$M_{r}=916.4$
Triclinic
$P \overline{1}$
$a=11.634$ (2) \AA
$b=12.172$ (1) \AA
$c=10.056(2) \AA$
$\alpha=114.099(9)^{\circ}$
$\beta=115.05(1)^{\circ}$
$\gamma=92.81(1)^{\circ}$
$V=1134.5(9) \AA^{3}$
$Z=2.00$
$D_{x}=1.34 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=48.92-49.93^{\circ}$
$\mu=0.6598 \mathrm{~mm}^{-1}$
$T=296.1 \mathrm{~K}$

Prism

$0.75 \times 0.65 \times 0.45 \mathrm{~mm}$ Clear

Data collection

AFC-6S diffractometer $\omega / 2 \theta$ scans
Absorption correction:
refined from ΔF
$T_{\text {min }}=0.924, T_{\text {max }}=$
1.066

4211 measured reflections
3994 independent reflections 3241 observed reflections
[I>3.00 (I)]

Refinement

Refinement on F
$R=0.0423$
$w R=0.0518$
$S=2.239$
3241 reflections
329 parameters
Only coordinates of H atoms refined
Weighting scheme based on measured e.s.d.'s
$(\Delta / \sigma)_{\max }=2.02$
$\Delta \rho_{\text {max }}=0.49487 \mathrm{e}^{-3}$
$\Delta \rho_{\text {max }}=0.4948 \mathrm{e}_{\text {min }}=-0.75714 \mathrm{e}^{-3}$
Extinction correction:
Zachariasen type 2 Gaussian isotropic
Extinction coefficient: 3.52111×10^{-5}
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1985). Program(s) used to solve structure: MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN LS. Software used to prepare material for publication: TEXSAN FINISH.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$U_{\text {eq }}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cr	0.88507 (4)	0.26373 (3)	0.47640 (4)	0.0314
P1	0.83161 (6)	0.37183 (5)	0.32166 (7)	0.0234
P2	1.06227 (6)	0.34698 (5)	0.46241 (7)	0.0259
O2	0.9733 (1)	0.3896 (1)	0.3212 (2)	0.0247
031	0.9271 (3)	0.4657 (2)	0.8062 (2)	0.0790
O11	0.8125 (2)	0.0277 (2)	0.1586 (3)	0.0705
O21	0.6229 (2)	0.1708 (3)	0.4383 (3)	0.0866
041	1.0236 (3)	0.1366 (3)	0.6746 (3)	0.1100
O1	0.8286 (2)	0.5183 (1)	0.3954 (2)	0.0298
N2	1.1501 (2)	0.2675 (2)	0.3888 (3)	0.0392
N1	0.7192 (2)	0.3118 (2)	0.1256 (2)	0.0323
C3	0.9156 (3)	0.3944 (3)	0.6808 (3)	0.0455
C 1	0.8416 (3)	0.1179 (2)	0.2781 (3)	0.0425
C21	1.2217 (3)	0.3214 (3)	0.3302 (4)	0.0629
C23	1.3708 (4)	0.3464 (5)	0.4283 (7)	0.1188
C2	0.7229 (3)	0.2060 (3)	0.4516 (3)	0.0504
C4	0.9702 (3)	0.1843 (3)	0.5981 (4)	0.0607
C22	1.1639 (4)	0.2583 (4)	0.1428 (5)	0.0978
C24	1.1689 (3)	0.1547 (3)	0.4086 (4)	0.0583
C25	1.1632 (5)	0.0481 (4)	0.2610 (6)	0.1061
C26	1.2885 (5)	0.1802 (5)	0.5712 (7)	0.1244
C11	0.7366 (4)	0.3582 (3)	0.0176 (4)	0.0651
C12	0.7660 (5)	0.2726 (4)	-0.1050 (5)	0.1110
C13	0.6753 (6)	0.4534 (5)	-0.0050 (6)	0.1211
C15	0.5461 (4)	0.1097 (4)	-0.0804 (6)	0.1006
C16	0.4923 (4)	0.2941 (6)	0.0894 (7)	0.1186
C14	0.5937 (3)	0.2273 (4)	0.0701 (4)	0.0769

Table 2. Geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$
$\mathrm{Cr}-\mathrm{P} 1$
$\mathrm{Cr}-\mathrm{P} 2$
$\mathrm{Cr}-\mathrm{C} 3$
$\mathrm{Cr}-\mathrm{C} 1$
$\mathrm{Cr}-\mathrm{C} 2$
$\mathrm{Cr}-\mathrm{C} 4$
$\mathrm{P} 1-\mathrm{O} 2$
$\mathrm{P} 1-\mathrm{O} 1$
$\mathrm{P} 1-\mathrm{N} 1$
$\mathrm{P} 2-\mathrm{O} 2$
$\mathrm{P} 2-\mathrm{O} 1$
$\mathrm{P} 2-\mathrm{N} 2$
$\mathrm{O} 31-\mathrm{C} 3$
$\mathrm{O} 11-\mathrm{C} 1$
$\mathrm{P} 1-\mathrm{Cr}-\mathrm{P} 2$
$\mathrm{P} 1-\mathrm{Cr}-\mathrm{C} 3$
$\mathrm{P} 1-\mathrm{Cr}-\mathrm{C} 1$
$\mathrm{P} 1-\mathrm{Cr}-\mathrm{C} 2$
$\mathrm{P} 1-\mathrm{Cr}-\mathrm{C} 4$
$\mathrm{P} 2-\mathrm{Cr}-\mathrm{C} 3$
$\mathrm{P} 2-\mathrm{Cr}-\mathrm{C} 1$
$\mathrm{P} 2-\mathrm{Cr}-\mathrm{C} 2$
$\mathrm{P} 2-\mathrm{Cr}-\mathrm{C} 4$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 1$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 2$
$\mathrm{C} 3-\mathrm{Cr}-\mathrm{C} 4$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 2$
$\mathrm{C} 1-\mathrm{Cr}-\mathrm{C} 4$
$\mathrm{C} 2-\mathrm{Cr}-\mathrm{C} 4$
$\mathrm{Cr}-\mathrm{P} 1-\mathrm{O} 2$
$\mathrm{Cr}-\mathrm{P} 1-\mathrm{O} 1$
$\mathrm{Cr}-\mathrm{P} 1-\mathrm{N} 1$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{N} 1$
$\mathrm{Cr}-\mathrm{P} 2-\mathrm{O} 2$
$\mathrm{Cr}-\mathrm{P} 2-\mathrm{O} 1$
$\mathrm{Cr}-\mathrm{P} 2-\mathrm{N} 2$
$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 1$

$2.3393(9)$	$\mathrm{O} 21-\mathrm{C} 2$
$2.3353(9)$	$\mathrm{O} 41-\mathrm{C} 4$
$1.881(3)$	$\mathrm{N} 2-\mathrm{C} 21$
$1.884(3)$	$\mathrm{N} 2-\mathrm{C} 24$
$1.856(3)$	$\mathrm{N} 1-\mathrm{C} 11$
$1.857(4)$	$\mathrm{N} 1-\mathrm{C} 14$
$1.655(2)$	$\mathrm{C} 21-\mathrm{C} 23$
$1.636(2)$	$\mathrm{C} 21-\mathrm{C} 22$
$1.637(2)$	$\mathrm{C} 24-\mathrm{C} 25$
$1.663(2)$	$\mathrm{C} 24-\mathrm{C} 26$
$1.640(2)$	$\mathrm{C} 11-\mathrm{C} 12$
$1.637(2)$	$\mathrm{C} 11-\mathrm{C} 13$
$1.146(3)$	$\mathrm{C} 15-\mathrm{C} 14$
$1.143(3)$	$\mathrm{C} 16-\mathrm{C} 14$
$66.16(3)$	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{N} 2$
$98.09(10)$	$\mathrm{O} 1-\mathrm{P} 2-\mathrm{N} 2$
$88.10(10)$	$\mathrm{P} 1-\mathrm{O} 2-\mathrm{P} 2$
$101.7(1)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{P} 2$
$164.4(1)$	$\mathrm{P} 2-\mathrm{N} 2-\mathrm{C} 21$
$98.57(9)$	$\mathrm{P} 2-\mathrm{N} 2-\mathrm{C} 24$
$89.0(1)$	$\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 24$
$167.6(1)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 11$
$98.4(1)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 14$
$171.7(1)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 14$
$85.2(1)$	$\mathrm{Cr}-\mathrm{C} 3-\mathrm{O} 31$
$86.1(1)$	$\mathrm{Cr}-\mathrm{C} 1-\mathrm{O} 11$
$88.1(1)$	$\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 23$
$89.4(1)$	$\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22$
$93.6(2)$	$\mathrm{C} 23-\mathrm{C} 21-\mathrm{C} 22$
$95.77(7)$	$\mathrm{Cr}-\mathrm{C} 2-\mathrm{O} 21$
$124.65(7)$	$\mathrm{Cr}-\mathrm{C} 4-\mathrm{O} 41$
$125.02(9)$	$\mathrm{N} 2-\mathrm{C} 24-\mathrm{C} 25$
$98.49(9)$	$\mathrm{N} 2-\mathrm{C} 24-\mathrm{C} 26$
$104.7(1)$	$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 26$
$102.2(1)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$
$95.70(6)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 13$
$124.68(8)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 13$
$125.77(9)$	$\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15$
$98.54(9)$	$\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 16$

1.151 (4)
1.144 (4)
1.466 (5)
1.480 (4)
1.488 (4)
1.482 (4)
1.526 (5)
1.513 (5)
1.492 (5)
1.524 (6)
1.437 (6)
1.436 (7)
1.445 (5)
1.500 (7)
104.8 (1)
101.4(1)
100.56(10)
135.6 (1)
118.4 (2)
117.8 (2)
123.1 (3)
119.7 (2)
117.5 (2)
122.1 (2)
173.3 (3)
177.9 (3)
113.4 (4)
114.4 (3)
115.0 (4)
179.1 (3)
179.2 (3)
114.0 (4)
114.0 (3)
112.2 (4)
115.1 (3)
118.6 (4)
121.6 (4)
$116.9(4)$
113.4 (4)

The complex was isolated in small yields as crystals from the thermal reaction of $\mathrm{Cr}(\mathrm{CO})_{6}$ with $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}$. It was recrystallized from hexane by slow cooling of a saturated solution. Analysis: calculated for $\mathrm{C}_{32} \mathrm{Cr}_{2} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{4} \mathrm{C} 41.92$, H $6.11, \mathrm{~N} 6.11 \%$; found C 41.90 , H 6.02 , N 5.91%. A crystal of the title compound was mounted on a glass fiber. Weak reflections [$I<10.0 \sigma(I)$] were rescanned (maximum of two rescans) and the counts accumulated to ensure good counting statistics. An empirical absorption correction, using the program DIFABS (Walker \& Stuart, 1983), and Lp and secondaryextinction corrections applied; no decay correction was made. Refinement minimized $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and $\sigma^{2}\left(F_{o}^{2}\right)$, where $\left.\sigma^{2}\left(F_{o}^{2}\right)=\left[S^{2}(C+4 B)+p F_{o}^{2}\right)^{2}\right] / \mathrm{Lp}^{2}(S=$ scan count, $B=$ normalized background); the weighting scheme was based on counting statistics and included a factor $(p=0.03)$ to downweight the intense reflections. Plots of $\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ versus $\left|F_{o}\right|$, reflection order, $\sin \theta / \lambda$ and various classes of indices showed no unusual trends. All calculations were performed on a VAXstation 3520 minicomputer. The enantiomorphs are indistinguishable from the X-ray data.

The authors acknowledge the financial support of the donors to the Petroleum Research Fund, administered by the American Chemical Society and National Science Foundation Research in Undergraduate Institutions Instrumentation Program (grant No. 8818397) for creation of the New England Molecular Structure Center at Keene State College.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71269 (33 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR 1030]

References

Cheung, K. K., Lai, T. F. \& Mok, K. S. (1971). J. Chem. Soc. pp. 16441647.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. Version 2.1. MSC, 3200 Research Forrest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forrest Drive, The Woodlands, TX 77381, USA.
Payne, D. S., Mokuolu, J. A. A. \& Speakman, J. C. (1965). J. Chem. Soc. Chem. Commun. p. 599.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wong, E. H., Gabe, E. J. \& Lee, F. L. (1989). J. Chem. Soc. Chem. Commun. pp. 1236-1238.
Wong, E. H., Prasad, L., Gabe, E. J. \& Bradley, F. C. (1982). J. Organomet. Chem. 236, 321-331.
Wong, E. H., Sun, X. Y., Gabe, E. J. \& Lee, F. L. (1991). Organometallics, 10, 3010-3020.
Wong, E. H., Turnbull, M. M., Hutchinson, K. D., Valdez, C., Gabe, E. J., Lee, F. L. \& Le Page, Y. (1988). J. Am. Chem. Soc. 110, 84228428.

